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Abstract. In earlier work the authors have extended Nehari’s well-known Schwarzian
derivative criterion for univalence of analytic functions to a univalence criterion for

canonical lifts of harmonic mappings to minimal surfaces. The present paper develops
some quantitative versions of that result in the form of two-point distortion theorems.

Along the way some distortion theorems for curves in Rn are given, thereby recasting

a recent injectivity criterion of Chuaqui and Gevirtz in quantitative form.

§1. Introduction.

The classical Koebe distortion theorem gives sharp bounds on the derivative
of a normalized analytic univalent function. Another measure of distortion is the
distance |f(z1)−f(z2)| between the images of two arbitrary points in the disk. Some
years ago, Blatter [3] gave a sharp lower bound for this distance in terms of the
hyperbolic distance between z1 and z2. More recently, Chuaqui and Pommerenke
[10] found a sharp two-point distortion theorem for functions whose Schwarzian
derivative satisfies Nehari’s condition |Sf(z)| ≤ 2(1 − |z|2)−2. Their result may be
viewed as a quantitative form of Nehari’s univalence criterion. The main purpose of
the present paper is to carry out a similar analysis for harmonic mappings, or rather
for their canonical lifts to minimal surfaces. Along the way we obtain distortion
theorems for curves in R

n, thereby recasting an injectivity criterion of Chuaqui and
Gevirtz [7] in quantitative form.

The Schwarzian derivative of a locally univalent analytic function is defined by

Sf = (f ′′/f ′)′ − 1

2
(f ′′/f ′)2 .

It has the invariance property S(T ◦ f) = Sf for every Möbius transformation

T (z) =
az + b

cz + d
, ad− bc 6= 0 .
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As a special case, S(T ) = 0 for every Möbius transformation. A function f has
Schwarzian Sf = 2ψ if and only if it has the form f = u1/u2 for some pair of
independent solutions w1 and w2 of the linear differential equation w′′ + ψw = 0.
As a consequence, if Sg = Sf , then g = T ◦ f for some Möbius transformation T .
In particular, Möbius transformations are the only functions with Sf = 0.

In 1949, Nehari [14] showed that if f is analytic and locally univalent in the unit
disk D and its Schwarzian satisfies either |Sf(z)| ≤ 2(1− |z|2)−2 or |Sf(z)| ≤ π2/2
for all z ∈ D, then f is univalent in D. Pokornyi [16] then stated, and Nehari proved,
that the condition |Sf(z)| ≤ 4(1 − |z|2)−1 also implies univalence. Nehari [15]
unified all three criteria by proving that f is univalent under the general hypothesis
|Sf(z)| ≤ 2p(|z|), where p(x) is a positive continuous even function defined on
the interval (−1, 1), with the properties that (1 − x2)2p(x) is nonincreasing on the
interval [0, 1) and no nontrivial solution u of the differential equation u′′ + pu = 0
has more than one zero in (−1, 1). The last condition can be replaced by the
equivalent requirement that some solution of the differential equation have no zeros
in (−1, 1). We will refer to such functions p(x) as Nehari functions.

It is clear from the Sturm comparison theorem that if p(x) is a Nehari function,
then so is cp(x) for any constant c in the interval 0 < c < 1. A Nehari function
p(x) is said to be extremal if cp(x) is not a Nehari function for any constant c > 1.
It was shown in [8] that some constant multiple of each Nehari function is an
extremal Nehari function. The functions p(x) = (1 − x2)−2, p(x) = π2/4, and
p(x) = 2(1 − x2)−1 are all extremal Nehari functions. Nonvanishing solutions of

their corresponding differential equations are u =
√

1 − x2, u = cos(πx/2), and
u = 1 − x2, respectively.

Ahlfors [1] introduced a notion of Schwarzian derivative for mappings of a real
interval into R

n, by formulating suitable analogues of the real and imaginary parts
of Sf for analytic functions f . A simple calculation shows that

Re{Sf} =
Re{f ′′′f ′}

|f ′|2 − 3
Re{f ′′f ′}2

|f ′|4 +
3

2

|f ′′|2
|f ′|2 .

For mappings ϕ : (a, b) 7→ R
n of class C3 with ϕ′(x) 6= 0, Ahlfors defined the

analogous expression

S1ϕ =
〈ϕ′, ϕ′′′〉
|ϕ′|2 − 3

〈ϕ′, ϕ′′〉2
|ϕ′|4 +

3

2

|ϕ′′|2
|ϕ′|2 , (1)

where 〈· , ·〉 denotes the Euclidean inner product and |x|2 = 〈x,x〉 for x ∈ R
n.

We will refer to S1ϕ as the Ahlfors Schwarzian of ϕ. As Ahlfors observed, it is
invariant under postcomposition with Möbius transformations; that is, under every
composition of rotations, magnifications, translations, and inversions in R

n.
In recent work, Chuaqui and Gevirtz [7] used the Ahlfors Schwarzian to give a

criterion for injectivity of curves. They proved the following theorem.
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Theorem A. Let p(x) be a continuous function such that the differential equation

u′′(x)+p(x)u(x) = 0 admits no nontrivial solution u(x) with more than one zero in

(−1, 1). Let ϕ : (−1, 1) 7→ R
n be a curve of class C3 with tangent vector ϕ′(x) 6= 0.

If S1ϕ(x) ≤ 2p(x), then ϕ is injective.

With the notation v = |ϕ′|, Chuaqui and Gevirtz also showed that

S1ϕ = (v′/v)′ − 1

2
(v′/v)2 + 1

2
v2k2 = Ss + 1

2
v2k2 , (2)

where s = s(x) is the arclength of the curve and k is its scalar curvature, the
magnitude of its curvature vector.

§2. Distortion of curves in R
n.

We now propose to give a sharpened form of Theorem A that expresses the
injectivity in quantitative form by a two-point distortion inequality. Closely related
is an estimate for distortion in terms of the spherical derivative. Here are our results.

Theorem 1. Let p(x) be a positive continuous even function defined on the interval

(−1, 1), with the property that no nontrivial solution u of the differential equation

u′′ + pu = 0 has more than one zero in (−1, 1). Let F (x) be the solution to the

differential equation SF = 2p determined by the conditions F (0) = 0, F ′(0) = 1,
and F ′′(0) = 0. Let ϕ : (−1, 1) 7→ R

n be a curve of class C3, normalized by

ϕ(0) = 0, |ϕ′(0)| = 1, and 〈ϕ′(0), ϕ′′(0)〉 = 0. If S1ϕ(x) ≤ 2p(x), then

(a) |ϕ′(x)| ≤ F ′(x) , x ∈ (−1, 1) , and

(b)
|ϕ′(x)|

1 + |ϕ(x)|2 ≤ F ′(x)

1 + F (x)2
, x ∈ (−1, 1) .

Theorem 2. Let p(x) and F (x) be as in Theorem 1. If ϕ : (−1, 1) 7→ R
n is a

curve of class C3 with the property S1ϕ(x) ≤ 2p(x), then

|ϕ(x1) − ϕ(x2)|
{|ϕ′(x1)||ϕ′(x2)|}1/2

≥ |F (x1) − F (x2)|
{F ′(x1)F ′(x2)}1/2

, x1, x2 ∈ (−1, 1) .

The normalization required for the curve ϕ in Theorem 1 can be achieved by
postcomposing with a suitable Möbius transformation. Note that no such normal-
ization is required for the two-point distortion result of Theorem 2.

Before passing to the proofs, it will be helpful to recall some properties of the
function F (x), which plays the role of extremal solution in Theorem A and in earlier
work of Nehari. Since the function p(x) of Theorem A is even, so is the solution
u0 of the differential equation u′′ + pu = 0 with initial conditions u0(0) = 1 and
u′

0
(0) = 0. Therefore, u0(x) 6= 0 on (−1, 1), because otherwise it would have at

least two zeros, contrary to hypothesis. Thus the function

F (x) =

∫ x

0

1/u0(t)
2 dt , −1 < x < 1 , (3)

3



is well defined and satisfies the required initial conditions F (0) = 0, F ′(0) = 1, and
F ′′(0) = 0. It also has the properties F ′(x) > 0 and F (−x) = −F (x). A calculation
shows that u1 = u0F is an independent solution of u′′ + pu = 0, and so F = u1/u0

has Schwarzian SF = 2p. Note also that S1F = SF , since F is real-valued. In
particular, S1F = 2p. Finally, it should be noted that F is strictly increasing on
(−1, 1), because F ′(x) > 0.

For certain choices of p(x) the function F (x) can be calculated explicitly. For

instance, if p(x) = (1 − x2)−2, then u0(x) =
√

1 − x2 and so

F (x) =

∫ x

0

1

1 − t2
dt =

1

2
log

1 + x

1 − x
.

Similarly, for p(x) = π2/4 we have u0(x) = cos(πx/2) , so that

F (x) =

∫ x

0

sec2(πt/2) dt =
2

π
tan(πx/2) .

If p(x) = 2(1 − x2)−1, then u0(x) = 1 − x2 and

F (x) =

∫ x

0

1

(1 − t2)2
dt =

1

4
log

1 + x

1 − x
+

1

2

x

1 − x2
.

In such cases the distortion bounds in Theorems 1 and 2 take more concrete form.
For example, if S1ϕ(x) ≤ π2/2, the inequality in Theorem 2 reduces to the elegant
form

|ϕ(x1) − ϕ(x2)|
{|ϕ′(x1)||ϕ′(x2)|}1/2

≥ 2

π
sin

(π
2
|x1 − x2|

)
.

If S1ϕ(x) ≤ 2(1 − x2)−2, it says that

|ϕ(x1) − ϕ(x2)|
{|ϕ′(x1)||ϕ′(x2)|}1/2

≥
√

(1 − x2
1
)(1 − x2

2
) d(x1, x2) ,

where d(x1, x2) is the hyperbolic distance between x1 and x2.

Proof of Theorem 1. Part (a) is in the paper by Chuaqui and Gevirtz [7] but we
include the proof here for the sake of completeness. It is known (and easy to
verify) that if g(x) is a real-valued function with g′(x) > 0, then the function
u(x) = g′(x)−1/2 satisfies the differential equation u′′ + 1

2
(Sg)u = 0. If we choose

g(x) = s(x), the arclength function along the given curve in R
n, then s′(x) = |ϕ′(x)|

and u(x) = |ϕ′(x)|−1/2 satisfies u′′+ 1

2
(Ss)u = 0. Moreover, the normalization of the

curve ϕ implies that u(0) = 1 and u′(0) = 0. But it follows from the relation (2) that
Ss(x) ≤ S1ϕ(x), and by hypothesis S1ϕ(x) ≤ 2p(x), so we see that 1

2
Ss(x) ≤ p(x).

Thus it follows from the Sturm comparison theorem that u(x) ≥ u0(x), which gives
the inequality (a).
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To prove (b) we consider the inversion

Φ(x) =
ϕ(x)

|ϕ(x)|2 .

Because the Ahlfors Schwarzian is Möbius invariant, we see that S1Φ = S1ϕ. On the
other hand, we find as in the proof of Part (a) that the function v(x) = |Φ′(x)|−1/2

satisfies v′′ + 1

2
(Ss)v = 0, where now s(x) denotes the arclength function along the

curve Φ, and
Ss(x) ≤ S1Φ(x) = S1ϕ(x) ≤ 2p(x) .

A straightforward calculation shows that

|Φ′(x)| =
|ϕ′(x)|
|ϕ(x)|2 ,

so that v(x) = |ϕ(x)| |ϕ′(x)|−1/2 and the normalization of the curve ϕ implies that
v(0) = 0 and v has a right-hand derivative v′(0) = 1. On the other hand, the
function u1 = u0F is a solution of u′′ + pu = 0 with the same initial conditions
u1(0) = 0 and u′

1
(0) = 1. Therefore, the Sturm comparison theorem gives v(x) ≥

u1(x) for x > 0, or
|ϕ(x)|

|ϕ′(x)|1/2
≥ |F (x)|
F ′(x)1/2

(4)

for 0 ≤ x < 1. Since v has a left-hand derivative v′(0) = −1, a similar argument
shows that −v(x) ≥ u1(x) for x < 0, which implies that (4) holds also for −1 <
x ≤ 0. Now square both sides of (4) and add the inequality of Part (a) in the form
1/|ϕ′(x)| ≥ 1/F ′(x) to obtain the desired result. �

Proof of Theorem 2. The proof is similar to that of Theorem 1. Fixing any x1 ∈
(−1, 1), we now construct the inversion

Φ(x) =
ϕ(x) − ϕ(x1)

|ϕ(x) − ϕ(x1)|2

with respect to the point ϕ(x1). By Möbius invariance, S1Φ = S1ϕ. The function
v(x) = |Φ′(x)|−1/2 satisfies v′′ + 1

2
(Ss)v = 0, where s(x) denotes the arclength

function along the curve Φ, and

Ss(x) ≤ S1Φ(x) = S1ϕ(x) ≤ 2p(x) .

A calculation gives

|Φ′(x)| =
|ϕ′(x)|

|ϕ(x) − ϕ(x1)|2
,

so that v(x) = |ϕ(x) − ϕ(x1)| |ϕ′(x)|−1/2. Now v(x1) = 0 and a calculation shows
that v has right-hand derivative v′(x1) = |ϕ′(x1)|1/2. If U(x) is the solution of
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the equation u′′ + pu = 0 with U(x1) = 0 and U ′(x1) = 1, the Sturm comparison
theorem gives the inequality |ϕ′(x1)|−1/2v(x) ≥ U(x) for x > x1. To calculate the
function U(x), first let

H(x) = − 1

F (x) − F (x1)
, so that H ′(x) =

F ′(x)

[F (x) − F (x1)]2
.

Note that SH = SF = 2p by the Möbius invariance of the Schwarzian. Thus by
the general principle stated at the start of the proof of Theorem 1, the function

w(x) = H ′(x)−1/2 =
F (x) − F (x1)

F ′(x)1/2

satisfies the equation w′′ + pw = 0 for x > x1. Also w(x1) = 0 and w′(x1) =
F ′(x1)

1/2. This shows that U(x) = F ′(x1)
−1/2w(x), so that the inequality |ϕ′(x1)|−1/2v(x) ≥

U(x) takes to the form

|ϕ(x) − ϕ(x1)|
{|ϕ′(x1)||ϕ′(x)|}1/2

≥ |F (x) − F (x1)|
{F ′(x1)F ′(x)}1/2

, x1 ≤ x < 1 .

Now let x = x2 to obtain the inequality of Theorem 2. �

The bounds in Theorems 1 and 2 are sharp. Equality occurs in all cases only
when the curvature κ = 0, so that the curve ϕ is a straight line. Indeed, the
relation (2) gives the inequality Ss(x) ≤ S1Φ(x), with equality only when κ = 0.
More precisely, in Theorem 1 equality occurs in either (a) or (b) at some point x0

if and only if the portion of the curve ϕ(x) between 0 and ϕ(x0) is a straight line
that is parametrized so that |ϕ′(x)| = F ′(x) for all x in the interval between 0 and
x0. In Theorem 2 equality occurs for a pair of points x1 and x2 if and only if the
curve is a straight line between the points ϕ(x1) and ϕ(x1) that is parametrized so
that |ϕ′(x)| = F ′(x) for all x in the interval between x1 and x2.

§3. Distortion of harmonic lifts.

With the help of Theorem 2, we can now derive a two-point distortion inequality
for the canonical lift of a harmonic mapping to a minimal surface. A harmonic
mapping is a complex-valued harmonic function f(z) = u(z)+iv(z), for z = x+iy in
the unit disk D of the complex plane. Such a mapping has a canonical decomposition
f = h+ g, where h and g are analytic in D and g(0) = 0.

According to the Weierstrass–Enneper formulas, a harmonic mapping f = h+ g
with |h′(z)| + |g′(z)| 6= 0 lifts locally to a minimal surface described by conformal
parameters if and only if its dilatation ω = g′/h′ has the form ω = q2 for some
meromorphic function q. The Cartesian coordinates (U, V,W ) of the surface are
then given by

U(z) = Re{f(z)} , V (z) = Im{f(z)} , W (z) = 2 Im

{∫ z

0

h′(ζ)q(ζ) dζ

}
.
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We use the notation f̃(z) =
(
U(z), V (z),W (z)

)
for the lifted mapping from D to

the minimal surface. The first fundamental form of the surface is ds2 = λ2|dz|2,
where the conformal metric is λ = |h′| + |g′| . The Gauss curvature of the surface

at a point f̃(z) is

K = − 1

λ2
∆(logλ) ,

where ∆ is the Laplacian operator. Further information about harmonic mappings
and their relation to minimal surfaces can be found in the book [12].

For a harmonic mapping f = h + g with λ(z) = |h′(z)| + |g′(z)| 6= 0, whose
dilatation is the square of a meromorphic function, the Schwarzian derivative is
defined [2] by the formula

Sf = 2
(
σzz − σz

2
)
, σ = log λ ,

where

σz =
∂σ

∂z
=

1

2

(
∂σ

∂x
− i

∂σ

∂y

)
, z = x+ iy .

If f is analytic, it is easily verified that Sf reduces to the classical Schwarzian.
In our paper [5] we found the following criterion for the lift of a harmonic mapping

to be univalent.

Theorem B. Let f = h+ g be a harmonic mapping of the unit disk, with λ(z) =
|h′(z)| + |g′(z)| 6= 0 and dilatation g′/h′ = q2 for some meromorphic function q.

Let f̃ denote the Weierstrass–Enneper lift of f to a minimal surface with Gauss

curvature K = K(f̃(z)) at the point f̃(z). Suppose that the inequality

|Sf(z)| + λ(z)
2|K(f̃(z))| ≤ 2p(|z|) , z ∈ D , (5)

holds for some Nehari function p. Then f̃ is univalent in D.

If f is analytic, its associated minimal surface is the complex plane itself, with
Gauss curvature K = 0, and the result reduces to Nehari’s theorem.

We can now sharpen Theorem B to express the univalence in quantitative form.

Under the same hypotheses it turns out that the harmonic lift f̃ actually satisfies
a two-point distortion condition. The inequality will involve the function F deter-
mined by a Nehari function p as in the formula (3). In order to state the result in
most elegant form, it will be convenient to assume that the given Nehari function
is extremal, as defined in Section 1.

Theorem 3. Let f be a harmonic mapping of the unit disk that has the properties

specified in Theorem B, and let f̃ be its canonical lift to a minimal surface. Suppose

that the inequality (5) holds for some extremal Nehari function p. Then f̃ satisfies

the inequality

|f̃(z1) − f̃(z2)| ≥
{

λ(z1)λ(z2)

F ′(|z1|)F ′(|z2|)

}1/2

d(z1, z2) , z1, z2 ∈ D ,
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where F (x) is defined by (3) and d(z1, z2) is the hyperbolic distance between the

points z1 and z2.

Proof. The proof will apply Theorem 2. The canonical lift f̃ onto a minimal surface

Σ defines a curve f̃ : (−1, 1) → Σ ⊂ R
3. As shown in [5], the Ahlfors Schwarzian

of this curve satisfies the inequality

S1f̃(x) ≤ |Sf(x)| + λ(z)
2|K(f̃(x))| .

Thus the hypothesis (5) tells us that S1f̃(x) ≤ 2p(x), and so by Theorem 2 we have
the inequality

|f̃(x1) − f̃(x2)|
{λ(x1)λ(x2)}1/2

≥ |F (x1) − F (x2)|
{F ′(x1)F ′(x2)}1/2

, x1, x2 ∈ (−1, 1) , (6)

since |f̃ ′(x)| = λ(x). In order to extend the result to an arbitrary pair of distinct
points z1, z2 ∈ D, we adapt a device due to Nehari [15]. Suppose first that the
hyperbolic geodesic γ passing through z1 and z2 lies in the upper half-plane and is
symmetric with respect to the imaginary axis. Denote by iρ the midpoint of γ, so
that ρ > 0. Then the Möbius transformation

T (z) =
iρ− z

1 + iρz

maps D onto itself and sends the segment (−1, 1) onto γ, with T (x1) = z1 and
T (x2) = z2 for some pair of points x1 and x2. The composite function f1(z) =

f(T (z)) is a harmonic mapping of the disk whose lift f̃1 = f̃ ◦ T again maps D

onto the minimal surface Σ. Using the property of the Nehari function p that
(1 − x2)2p(x) is nonincreasing on [0, 1), we see as in [5] that (5) implies

|Sf1(x)| + λ1(x)
2|K(f̃1(x))| ≤ 2p(x) , −1 < x < 1 , (7)

where λ1 = |h′
1
| + |g′

1
| is the conformal factor associated with f1 = h1 + g1. It

follows as before that S1f̃1(x)) ≤ 2p(x), and so by Theorem 2 the inequality (6)
holds with f replaced by f1. In other words,

|f̃(z1) − f̃(z2)|
{λ(z1)λ(z2)}1/2

≥ {|T ′(x1)||T ′(x2)|}1/2|F (x1) − F (x2)|
{F ′(x1)F ′(x2)}1/2

. (8)

We now develop a lower estimate for the right-hand side of the inequality (8)
that depends explicitly on z1 and z2. It was shown in [9] that the function F
associated with an extremal Nehari function p has the property that (1− x2)F ′(x)
is nondecreasing on the interval [0, 1). Since F ′ is an even function with F ′(0) = 1,
this shows that (1 − x2)F ′(x) ≥ 1 on (−1, 1), Therefore,

|F (x1) − F (x2)| =

∫ x2

x1

F ′(x) dx ≥
∫ x2

x1

1

1 − x2
dx = d(x1, x2) .
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By Möbius invariance of the hyperbolic metric, it follows that |F (x1) − F (x2)| ≥
d(z1, z2). On the other hand,

|T ′(x)|
1 − |T (x)|2 =

1

1 − x2

and a simple calculation shows that |T (x)| > |x|, so that

(1 − x2

j )F
′(xj) ≤ (1 − |zj |2)F ′(|zj |) = (1 − x2

j )|T ′(xj)|F ′(|zj |) , j = 1, 2 .

Consequently,

{|T ′(x1)||T ′(x2)|}1/2|F (x1) − F (x2)|
{F ′(x1)F ′(x2)}1/2

≥ d(z1, z2)

{F ′(|z1|)F ′(|z2|)}1/2
, (9)

and the desired result follows in the special case where the geodesic γ is symmetric
with respect to the imaginary axis. The general result now follows from the obvious
fact that the right-hand side of (9) is invariant under rotation of the disk. This
proves Theorem 3. �

It should be observed that the inequality is sharp for the Nehari function p(x) =
(1−x2)−2, since (1−x2)F ′(x) is constant in this case. It may also be remarked that
the restriction to extremal Nehari functions is not essential. If p is not extremal,
then p1 = cp is an extremal Nehari function for some constant c > 1, and the
inequality (5) holds a fortiori with p replaced by p1. However, the function F that
occurs in the lower bound must be calculated in terms of p1 rather than p.

§4. Distortion in the surface metric.

Although Theorem 3 expresses the univalence of the harmonic lift f̃ in quantita-
tive form, its estimate of distortion does not lead to a covering theorem analogous
to the classical Koebe one-quarter theorem (see for instance [11]). For that purpose
it is natural to replace the Euclidean metric by the surface metric

ρ(w1, w2) =

∫

Γ

ds =

∫

γ

λ(z) |dz| ,

where Γ is a geodesic joining the points w1 and w2 on the minimal surface Σ = f̃(D)

and γ = f̃−1(Γ) is its preimage in the unit disk. (More precisely, in case there is
no such geodesic, ρ(w1, w2) is defined as the infimum of the lengths of all curves
joining the two points.)

Here another extremal function comes into play, a companion of the function F
that enters into Theorem 3. Given a Nehari function p, let u1 be the solution of the
differential equation u′′ − pu = 0 with initial conditions u1(0) = 1 and u′

1
(0) = 0.

Since p(x) > 0 and u1(0) > 0, the solution u1 is convex and so u1(x) ≥ 1 in (−1, 1).
Define

G(x) =

∫ x

0

1/u1(t)
2 dt .

Then, by the initial remark in the proof of Theorem 1, we see that SG = −2p. It
is also clear that G(0) = 0, G′(0) = 1, and G′′(0) = 0. With this notation, we are
now prepared to state the distortion theorem.
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Theorem 4. Let f be a harmonic mapping of the unit disk that has the properties

specified in Theorem B. Let f̃ be its canonical lift to a minimal surface Σ = f̃(D),
with conformal metric λ and σ = logλ. Suppose in particular that f satisfies the

condition (5) for some Nehari function p. Suppose further that p(x) is nondecreas-

ing on the interval [0, 1). Then for 0 < r < 1,

min
|z|=r

ρ
(
f̃(z), f̃(0)

)
≥ λ(0)G(r)

1 + |σz(0)|G(r)
, (10)

In particular, the surface Σ contains a metric disk of radius

R =
λ(0)G(1)

1 + |σz(0)|G(1)

centered at f̃(0).

Before embarking on the proof, we will examine the particular case where p(x) =
(1 − x2)−2. Then (cf. [8]) it can be verified that

u1(x) =
1

2

√
1 − x2

{(
1 + x

1 − x

)√
2/2

+

(
1 − x

1 + x

)√
2/2

}

and

G(x) =
1√
2

(1 + x)
√

2 − (1 − x)
√

2

(1 + x)
√

2 + (1 − x)
√

2
, (11)

with G(1) = 1/
√

2. In the classical case where f(z) = z + a2z
2 + . . . is analytic

and satisfies |Sf(z)| ≤ 2(1 − |z|2)−2, the covering radius in Theorem 4 reduces to

R =
1

|a2| +
√

2
.

But a result of Essén and Keogh [13] gives the coefficient bound |a2| ≤
√

2 in
this case, so we conclude from Theorem 4 that the image f(D) contains the disk

|w| <
√

2/4. This estimate is sharp, as shown in [13], with extremal function

G⋆(z) =
G(z)

1 +
√

2G(z)
=

√
2

4

[
1 −

(
1 − z

1 + z

)√
2
]

= z −
√

2 z2 + . . . ,

which has Schwarzian SG⋆(z) = −2(1 − z2)−2. It was shown in [8] that f(D)
contains the larger disk |w| < 1/2 if |Sf(z)| ≤ 2(1 − |z|2)−2 and a2 = 0.

To prepare for a proof of Theorem 4, we now state a lemma that expresses the
Ahlfors Schwarzian of the lift to Σ of a curve in the disk. It is a slight generalization
of a formula in [5], where the underlying curve was taken to be the real interval
(−1, 1). The formula also plays a role in [6], where the setting is different but the
derivation is essentially the same.
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Lemma. Let γ(t) be an arclength-parametrized curve in D with curvature κ(t),

and let ϕ(t) = f̃(γ(t)) be its lift to a curve Γ on the surface Σ = f̃(D). Let ke(t)
denote the normal component of the curvature vector of Γ with respect to Σ, and

let K(ϕ(t)) be the Gauss curvature of Σ at the point ϕ(t). Then

(S1ϕ)(t) = Re
{
(Sf)(γ(t)) γ′(t)2

}
+ 1

2
λ(γ(t))2

[
K(ϕ(t)) + ke(t)

2
]
+ 1

2
κ(t)2 . (12)

Proof of Theorem 4. For fixed r ∈ (0, 1), let z0 be a point on the circle |z| = r

where the minimum distance ρ
(
f̃(z), f̃(0)

)
is attained. Then the geodesic Γ that

joins f̃(0) to f̃(z0) lies on the subsurface Σr = {f̃(z) : |z| ≤ r}. Let γ = f̃−1(Γ) be
the preimage in Dr = {z ∈ D : |z| ≤ r}, and let L ≥ r denote the arclength of γ.
Let γ(t) be the parametrization of γ with respect to arclength, with γ(0) = 0, and

let ϕ(t) = f̃(γ(t)) be the corresponding parametrization of Γ. Finally let

v(t) = λ(ϕ(t)) = |ϕ′(t)| , and let s(t) =

∫ t

0

v(τ) dτ

denote the arclength along the curve Γ. According to the relation (2), the Ahlfors
Schwarzian of ϕ has the form

S1ϕ = Ss+ 1

2
v2

(
ki

2 + ke
2
)
,

where ki and ke denote respectively the tangential and normal components of cur-
vature. Comparing this with the expression (12) for S1ϕ given in the lemma, we
conclude that

(Ss)(t) = Re
{
(Sf)(γ(t)) γ′(t)2

}
+ 1

2
v(t))2|K(ϕ(t))|+ 1

2
κ(t)2 , (13)

since the tangential curvature ki vanishes along a geodesic. But the univalence
criterion (5) implies that

Re
{
(Sf)(γ(t)) γ′(t)2

}
≥ −|(Sf)(γ(t))| ≥ v(t)2|K(ϕ(t))| − 2p(|γ(t)|) .

Hence it follows from (13) that

(Ss)(t) ≥ 3

2
v(t)2|K(ϕ(t))| − 2p(|γ(t)|) ≥ −2p(|γ(t)|).

Now observe that |γ(t)| ≤ t since t is the arclength of the curve from γ(0) = 0 to
γ(t). Therefore, p(|γ(t)|) ≤ p(t) because of the hypothesis that p is nondecreasing
on the interval [0, 1), and we have proved that

(Ss)(t) ≥ −2p(t) , 0 ≤ t ≤ L1 = min{1, L} . (14)

This is the inequality we will need for application of the Sturm comparison theorem.
11



For that purpose, first note that the function w = v−1/2 is the solution of

w′′ + 1

2
(Ss)w = 0 , w(0) = λ(0)−1/2 , w′(0) = −1

2
v′(0)λ(0)−3/2 ,

with
w′(0) ≤ |w′(0)| ≤ |λz(0)|λ(0)−3/2 .

Next consider the solution u2(t) of the differential equation

u′′ − pu = 0 with u2(0) = λ(0)−1/2 , u′
2
(0) = |λz(0)|λ(0)−3/2 .

Since −p(t) ≤ 1

2
(Ss)(t) by (14), and also u2(0) = w(0) and u′

2
(0) ≥ w′(0), it follows

from the Sturm comparison theorem that

w(t) ≤ u2(t) , 0 ≤ t ≤ L1 .

Now let

H(x) =

∫ x

0

1/u2(t)
2 dt ,

and observe that SH = −2p = SG, so that H(x) = T (G(x)) for some Möbius
transformation T . In order to calculate T explicitly, note first that T (0) = 0 since
H(0) = G(0) = 0, so that T has the form T (x) = x/(ax+b) for some real parameters
a and b. Writing

[aG(x) + b]H(x) = G(x)

and differentiating, we find

aG′(x)H(x) + [aG(x) + b]H ′(x) = G′(x) ,

so that

b =
G′(0)

H ′(0)
=
u2(0)2

u1(0)2
=

1

λ(0)
.

Another differentiation produces the relation a = |λz(0)|λ(0)−2. This shows that

H(x) =
λ(0)2G(x)

|λz(0)|G(x) + λ(0)
=

λ(0)G(x)

1 + |σz(0)|G(x)
. (15)

Consequently, for 0 ≤ t ≤ L1 we have
∫ t

0

v(τ) dτ =

∫ t

0

w(τ)−2 dτ ≥
∫ t

0

u2(τ)
−2 dτ = H(t) .

Hence

ρ(f̃(ζ), f̃(0)) =

∫

γ

λ(z) |dz| =

∫ L

0

v(τ) dτ

≥
∫ r

0

v(τ) dτ ≥ H(r) .

In view of the formula (15), this gives the inequality (12) stated in Theorem 4. �

The class of harmonic mappings considered in Theorem 4, satisfying in partic-
ular the inequality (5), is invariant under precomposition f ◦ T with Möbius self-
mappings of the disk when p(x) = (1 − x2)−2. This property yields an invariant
formulation of Theorem 4, virtually as a corollary.
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Corollary. Let f , f̃ , λ, and σ be as in Theorem 4, and suppose that p(x) =
(1 − x2)−2, so that

|Sf(z)| + λ(z)
2|K(f̃(z))| ≤ 2

(1 − |z|2)2 , z ∈ D .

Then for each fixed α ∈ D and 0 < r < 1,

min
| z−α

1−αz
|=r

ρ
(
f̃(z), f̃(α)

)
≥ (1 − |α|2)λ(α)G(r)

1 + |(1 − |α|2)σz(α) − α| G(r)
, (16)

where G is defined by (11).

Proof. Consider the harmonic mapping

f1(z) = f(T (z)) , where T (z) =
z + α

1 + αz
.

Let f̃1(z) = f̃(T (z)) be its harmonic lift, and let

λ1(z) = λ(T (z))|T ′(z)| = λ(T (z))
1 − |α|2
|1 + αz|2

denote its conformal metric, with σ1 = logλ1. Then λ1(0) = (1 − |α|2)λ(α) and

σ1z(z) = σz(T (z))T ′(z) − α

1 + αz
,

so that
σ1z(0) = (1 − |α|2)σz(α) − α .

The inequality (16) now follows from (10) and the fact that the circles |z| = r and∣∣∣ z−α
1−αz

∣∣∣ = r correspond under the mapping T . �
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